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Abstract. The pervasive nature of multimedia recording devices en-
ables novel pervasive multimedia applications with automatic, inexpen-
sive, and ubiquitous identification and locationing abilities. We present
the design and implementation of Ferret, a scalable system for locating
nomadic objects augmented with RFID tags and displaying them to a
user in real-time. We present two alternative algorithms for refining a
postulation of an object’s location using a stream of noisy readings from
an RFID reader: an online algorithm for real-time use on a mobile device,
and an offline algorithm for use in post-processing applications. We also
present methods for detecting when nomadic objects move and how to
reset the algorithms to restart the refinement process. An experimental
evaluation of the Ferret prototype shows that (i) Ferret can refine object
locations to only 1% of the reader’s coverage region in less than 2 min-
utes with small error rate (2.22%); (ii) Ferret can detect nomadic objects
with 100% accuracy when the nomadic distances exceed 20cm; and (iii)
Ferret works with a variety of user mobility patterns.

1 Introduction

Advances in digital imaging technologies have led to a proliferation of consumer
devices with video capture capabilities. The pervasive nature of multimedia
recording devices such as cellphones, digital camcorders, PDAs and laptops,
has made it relatively simple to capture, transform, and share large volumes
of personal video and image content. A concurrent trend is the emergence of
low-cost identification technologies such as RFID tags, designed to replace bar-
codes [12]. Each tag contains a numeric code that uniquely identifies the object
and can be queried by a wireless reader. It is likely that in the near future many
personal objects (e.g., books, clothing, food items, furniture) will be equipped
with self-identifying RFID tags.

The confluence of these trends—the ubiquity of RFID tags and the perva-
sive nature of multimedia recording devices—enables novel pervasive multimedia
applications with automatic, inexpensive, and ubiquitous identification and lo-
cation abilities. By equipping cameras with RFID readers, it is possible to record
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images as well as the identities and locations of all RFID-tagged objects con-
tained within each image. The captured video can then be queried in real-time
to display the location of a particular object.

While the inexpensive nature of RFID tags eases large-scale deployment is-
sues, their passive nature raises a number of hurdles. A key limitation is that pas-
sive RFID tags are self-identifying but not self-locating (i.e., upon being queried,
a tag can report its identify but not its location). Consequently, if multiple ob-
jects are present in a captured image, it is not possible to distinguish between
these objects or pinpoint their individual locations. Some of the applications
(e.g., pinpointing a misplaced book on a bookshelf) require location information
in addition to object identities. While numerous locationing technologies such
as GPS and ultrasound [10, 13, 14] are available, it is not possible to equip pas-
sive RFID tags with these capabilities due to reasons of cost, form-factor and
limited battery life. Instead, we require a locationing technology that does not
depend on modifications to tags, is easily maintained, and scales to hundreds or
thousands of tagged objects.

To address the above challenges, we have designed a system called Ferret.
Ferret combines locationing technologies with pervasive multimedia applications.
Ferret can locate objects using their RFID tags and displays their locations in
real-time to a mobile user. As the positions of objects are uncertain, the system
overlays the video display with an outline of where the object probably is. For
instance, a user with a portable camera can ask the system to display the location
of every new object in the room, and the display will show an outline of all of
those locations. The display is constantly updated as the user moves using the
continuous stream of tag readings to update locations.

Ferret uses the location and directionality of RFID readers to infer the lo-
cations of nearby tags. Ferret leverages the user’s inherent mobility to produce
readings of the tag from multiple vantage points. It does this through two novel
algorithms that refine the locations of objects using a stream of noisy readings
from RFID tags. One algorithm is designed for offline use, given a large amount
of computational power, while the other is designed to operate in real-time on
a mobile system. In the case of the offline algorithm, we also incorporate neg-
ative readings—when the reader does not see the object—this greatly reduces
the object’s possible locations.

We have implemented a prototype of Ferret and have used it to conduct a
detailed performance evaluation. Our experiments pay specific attention to how
fast Ferret can refine object locations, the error rate in locating objects, and
how well it handles nomadic objects. Our results show that (i) Ferret can refine
object locations to only 1% of the reader’s coverage region in less than 2 minutes
with small error rate (2.22%); (ii) The offline algorithm incorporates information
about not seeing the object, outperforming the online algorithm by a factor of
13 or more; (iii) Ferret can detect nomadic objects with 100% accuracy when
the moving distances exceed 20cm; and (iv) Ferret works with a wide variety of
user mobility patterns.

Ferret provides systems support for a variety of new applications. For in-
stance, users can locate a misplaced book on a bookshelf. Robots can use such



Fig. 1. Use of Ferret to discover the location of a soup can in an office

devices to conduct real-time identification and search operations. Vision-based
applications can use them to quickly learn the structure or organization of a
space. Inventory tracking applications can proactively generate missing object
alerts upon detecting the absence of an object. We imagine that the ability to
locate and identify thousands of objects in a space will enable new opportunities
in vision and graphics, such as augmented reality and immersive systems.

2 Ferret Design

Ferret is designed to operate on a handheld video camera with a display. To use
Ferret, the user selects some set of objects she would like to locate in the room
and moves around the room with the camera. Using an RFID reader embedded
in the video camera, Ferret samples for nearby tags, and in real-time updates
the camera’s display with an outline of the probable location of the objects
she is searching for. Ferret’s knowledge of object location can be imprecise, so
rather than showing a single centroid point, Ferret displays the outline, leaving
the interpretation of the precise location to the user’s cognition. For instance,
if Ferret can narrow the location of a book to a small region on a shelf, a user
can quickly find the precise location. Figure 1 provides a pictorial representation
of how the system would work. In this scenario the user is looking for a coffee
cup in a messy office. After scanning the room using a Ferret-based camera, the
system highlights a small region that contains the cup.

2.1 Nomadic Location with RFID

Many pervasive systems that rely on location are predicated on the assumption
that the number of objects requiring location information is small and mobile.
In contrast, we designed Ferret to support a massive number of mostly static,
or nomadic objects—objects that change locations infrequently. As a fraction of
all objects, nomadic and static ones are in the vast majority—in any given room
it is likely that there are hundreds, or possibly thousands of nomadic and static
objects, while there are only a few mobile ones.

The primary barrier to providing locationing information for such a large
number of objects is the reliance on batteries—making objects self-locating re-
quires the use of a battery-powered locationing hardware. Even though location-
ing systems such as ultrasound [10] and Ultra-Wide Band (UWB) are becoming



more energy efficient, equipping hundreds of objects in a room with self-locating
capabilities simply does not scale, since it will require changing an unmanageable
number of batteries. In contrast, passive RFID provides a battery-free, inexpen-
sive, distributed, and easily maintained method for identifying objects; Ferret
adds locationing capabilities to such objects. Ferret leverages the fact that an
increasing number of objects will be equipped with RFID tags as a replacement
to barcodes. Further, RFID tags continue to drop in price, and one can imagine
attaching tags to a large number of household or office objects.

As RFID tags are passive devices and have no notion of their own location,
Ferret must continuously calculate and improve its own notion of the object
locations. The system fuses a stream of noisy, and imprecise readings from an
RFID reader to formulate a proposition of the object’s location. The key insight
in Ferret is to exploit the location of a camera/reader to infer the location of
objects in its vicinity. In essence, any tag that can be read by a reader must be
contained within its sensing range; by maintaining a history of tags read by the
system, Ferret can progressively narrow the region containing the object. This
is a simple yet elegant technique for inferring the location of passive RFID tags
without expensive, battery-powered locationing capabilities.

2.2 Infrastructure Requirements

Strictly speaking, calculating and displaying object locations does not require
any infrastructural support. Displaying a location on the video, as well as com-
bining multiple readings of the object location, only requires relative locations,
such as those from inertial navigation systems [1]. However, it is likely that
knowledge of object locations in relation to a known coordinate system, such as
GPS or a building map, will be useful for many applications. We assume that
the camera/reader uses such a locationing system, such as ultrasound or UWB,
to determine its own location and then uses it to infer the location of objects in
its vicinity.

As Ferret uses a directional video camera and RFID reader, it also requires an
orientation system that can measure the pan (also known as heading and yaw),
tilt (also known as pitch), and roll of the system. While research has proposed
orientation systems for ultrasound [10], we have chosen to a use commercially
available digital compass. Similar to the locationing system, Ferret benefits from
having absolute orientation, although it can operate with only a relative orien-
tation.

2.3 Location Storage

For each object, Ferret must store a description of the object’s location. Consid-
ering that some RFID tags are remotely rewritable, Ferret can store the location
for an object directly on the tag itself. Other options are to store the locations
locally in each Ferret reader, or in an online, external database. Each option
provides different privacy, performance, and management tradeoffs. Storing lo-
cations locally on each reader means that each independent Ferret device must



start finding objects with zero initial knowledge. As the device moves and senses
the same object from different vantage points, it can use a sequence of readings
to infer and refine the object location. The advantage of this method is that it
works with read-only RFID tags and does not require any information sharing
across devices. However, it prevents the device from exploiting history available
from other readers that have seen the object in the recent past. In contrast, if
location information can be remotely written to the RFID tags then other Ferret
devices can start with better initial estimates of object location. However, this
option requires writable tags and the small storage available on a tag limits the
amount of history that can be maintained. In both of the above options, any
device that has an RFID reader can determine object locations without needing
the full complexity of the Ferret system.

A third option is to store the location information in a central database. This
has the advantages of allowing offline querying and providing initial location es-
timates to mobile readers; further, since database storage is plentiful, the system
can store long histories as well as past locations of nomadic objects. However,
it requires readers to have connectivity to the database, the burden of manage-
ment, and privacy controls on the database. Storing data on the tags also has
implications for privacy control, however one must at least be proximate to the
tag to query its location.

At the heart of Ferret is an RFID localization system that can infer the loca-
tions of individual passive RFID tagged objects. Ferret then uses this localization
system to dynamically discover, update, store, and display object locations. The
following section presents the design of our RFID localization technique.

3 RFID Locationing

Consider an RFID reader that queries all tags in its vicinity—the reader emits
a signal and tags respond with their unique identifier. Given all responses to a
query, the reader can produce positive or negative assertions whether a particu-
lar tag is present within its reading range. The reader can not directly determine
the exact location of the tag in relation to the reader, or even a distance measure-
ment. However, just one positive reading of a tag greatly reduces the possible
locations for that particular object—a positive reading indicates that the object
is contained in the volume defined by the read range of the reader (see Figure 2).
Ferret leverages the user’s mobility to produce a series of readings; the coverage
region from each reading is intersected with all readings from the recent past,
further reducing the possible locations for the object (see Figure 3). Using this
method, Ferret can continually improve its postulation of the object location.

In addition to positive readings of an object’s RFID tag, the reader implicitly
indicates a negative reading whenever it fails to get a reading for a particular
tag that it is looking for. Using a similar method to positive readings, Ferret
subtracts the reader’s coverage region from the postulation of the object’s loca-
tion. This also improves the postulation of the object’s location. A third method
to reduce the likely positions for the object is to modulate the power output of
the reader. If a particular power output produces a positive reading, and a lower



power produces a negative reading, the system has gained additional knowledge
about the location of the object.

In general, whenever a tag is present in the read range, the reader is assumed
to detect it with a certain probability—objects closer to the centroid of its read
range are detected with higher probabilities, while objects at the boundary are
detected with lower probabilities. Thus, each positive reading not only gives
us a region that is likely to contain the object, it also associates probability
values for each point within that region. This coverage map of a reader is shown
in Figure 2. The map can be determined from the antenna data sheet, or by
manually mapping the probability of detecting tags at different (x,y,z) offsets
from the reader.

Reader has a 95% chance 
of detecting a tag here

Reader has a 5% 
chance of detecting 

a tag here

Reader has a 0% 
chance of detecting 

a tag here

Fig. 2. Coverage region

Fig. 3. Refining location estimates

Given a three dimensional grid of the environment and assuming no prior
history, Ferret starts with an initial postulate that associates an unknown prob-
ability of finding the object at each coordinate within the grid. For each positive
reading, the probability values of each grid point contained within the coverage
range are refined (by intersecting the range with past history as shown in Figure
3). Similarly, for each negative reading, the the probability values of each grid
point contained within the coverage range is decreased. This results in a three-
dimensional map, M(x, y, z), that contains the probability of seeing a tag at
each data point in relation to the reader. Using multiple power outputs requires
building a map for each power output level. Due to several constraints in our
current prototype, Ferret currently does not use power modulation; however,
adding this to the system will be trivial.

The amount of computation that the system can do drastically affects the
location algorithm that performs intersections, the compensation for false nega-



tives, and how it reflects the map to the user. Next we describe two alternative
methods, one that is computationally intense and cannot be done in realtime
on current mobile hardware. Such an offline technique is useful for describing an
eventual goal for the system, or how to use the system for analyzing the data
after it is collected. However, our goal is to implement Ferret on a mobile device
so we also describe an online algorithm with drastically reduced computational
cost.

3.1 Offline Locationing Algorithm

Formally, if we consider Ferret’s readings as a series of readings, both positive
and negative, as a series D = {D1, D2, D3, ...Dn}, and we want to derive the
probability of the object being at position X, given the readings from the RFID,
or P (X|D). If we assume that each reading of the RFID reader is an independent
trial, we can compute the likelihood as:

P (X|D) =
P (X|{D1, ...Dn−1})P (Dn|X)

P ({D1...DN )}
1
Z

, (1)

where Z is a normalization factor. We omit the proof as it is a straight-forward
application of conditional probability.

If we first assume that the Ferret device (camera) is completely stationary,
it operates as follows: i) once Ferret receives the first positive reading of a tag
it initializes a three dimensional map, L, with the coverage map M , to track
the probability that the object is at each of the coordinates in the map. ii) each
successive reading multiplies each coordinate in L by M(x, y, z) if the reading
was positive, or 1 − M(x, y, z) if the reading was negative. This approach is
derived from Elfes’s work on occupancy grids for robotic navigation [3], and is
equivalent to Hähnel’s approach for using sensor readings to locate RFID tags [6].

3.2 Translation, Rotation and Projection

The basic algorithm described above assumes a stationary camera/reader; Fer-
ret’s notion of object location does not improve beyond a point, even with a large
number of readings—most points in the reader’s range (i.e., within the coverage
map) will continue to have a high, and equally likely probability of detecting
the tag. Subsequently, multiple readings produce a large map with equally likely
probabilities of the object’s location. Instead, Ferret depends on the user’s mo-
tion to reduce the possibilities for the object location—as the user moves in the
environment, the same object is observed by the camera from multiple vantage
points and intersecting these ranges allows Ferret to narrow the region contain-
ing the object. Incorporating motion is straightforward; however, the coordinate
system of the coverage map M must be reconciled with that of the map L before
this can be done.

The coverage map shown in Figure 3 is described in a three-dimensional coor-
dinate system with the origin at the center of the reader’s RFID antenna, which
we refer to as the reader coordinate system. The camera, although attached to



the RFID reader, is offset from the reader, and has a slightly different coordinate
system. We refer to this as the camera coordinate system which has its origin
at the center of the camera’s CCD sensor. To combine multiple readings from
the reader, and subsequently display them to the user, each map M must be
transformed into a common coordinate system. We refer to this as the world
coordinate system. The world can have its origin at any point in the space—with
a locationing system we can use its origin, or with an inertial location system
we can use the first location of the reader. Performing this transformation is
possible using techniques from linear algebra and computer graphics [5]. Further
details can be found in a technical report [15].

When computing the intersection of coverage maps, Ferret first transforms
the coverage map, M into the world coordinate system, and computes the in-
tersection according to the methods presented in Section 3.1 to produce a new
map L containing the likelihood of an object’s location.

Once Ferret produces a three dimensional map that it believes contains a
particular object, it must overlay this region onto the video screen of the camera;
doing so involves projecting a 3D map onto a two dimensional display. This is
done in two steps: thresholding and projection. The threshold step places a
minimum value for the likelihood on the map L— by using a small, but non-
zero value for the threshold, Ferret reduces the volume that encompasses the
likely position of the object. However, using a larger threshold may cause Ferret
to shrink the volume excessively, thus missing the object. Currently this is a
tunable parameter in Ferret—in the evaluation section we demonstrate how to
choose a reasonable value.

Finally, Ferret projects the intersection map onto the image plane of the video
display. Ferret must transform the intersection map from the world coordinate
system into the camera coordinate system. Ferret performs this transformation
using the camera’s current position and orientation. Assuming that the z-axis
of the camera coordinate system is co-linear with the camera’s optical axis,
projecting the image onto the image plane is straightforward.

For each reading the RFID reader produces, the location algorithm must
perform O(n3) operations, for a three dimensional space that is n × n × n,
in addition to translating and rotating the coverage map, and projecting the
location map onto the display. If Ferret is searching for multiple objects, it must
perform these operations for each individual object. In practice, we have found
that each RFID reading consumes 0.7 seconds on a modern processor, while our
RFID reader produces 4 readings per second. Given the speed at which a human
may move the camera, this is not feasible to do in realtime, however it works
well for an offline system that has less stringent latency requirements. An offline
algorithm also has the opportunity to perform these operations for the whole
video, and then use the smallest region that it computed to back-annotate the
entire video stream with that region.



3.3 Online Locationing Algorithm

Given that the offline algorithm is too computationally intensive for a mobile
device to operate in real-time, we describe a greatly simplified version of the
locationing algorithm. The primary goal is to reduce the representation of the
probability of where the object is. Instead of a full representation that describes
the probability at each location, we reduce it to describing just the convex region
where the object is with very high probability. Describing such a region is very
compact, as we only need to track the points that describe the perimeter of
the convex region. Intersecting two maps is very fast, as it is a series of line
intersections.

Figure 4 shows this in detail for two dimensions, extending it to three di-
mensions is straightforward. The first half of the diagram shows sample points
that describe the outside of the coverage map. Ferret rotates and translates the
coverage map M as described in the previous section, and intersects it with
the current map L. For each constant y value, the system finds the intersection
of the two line segments and uses that as the description of the new map L.
For instance in Figure 4, we choose a constant y value y1. After rotating and
translating the map M to match to the reader’s current position, the system in-
tersects the two line segments, (x1, y1)− (x3, y1) from the current map L, with
(x2, y1) − (x4, y1) from the new map M . The resulting intersection is the seg-
ment (x2, y1)− (x3, y1), which describes the perimeter of the new location map
L. Ferret repeats this process for all y values. Extending this to three dimensions
is straightforward: intersect two line segments for each pair of constant y and z
value. This means the complexity of the intersection is O(n2) rather than O(n3)
as in the offline algorithm.

Fig. 4. Online location estimation

Also, instead of using a map of probabilities for the coverage map, we reduce
it to the convex shape that describes the coverage region of the RFID reader
than can read tags with some probability greater than 0. This virtually elim-
inates the possibility of false positives. Additionally, describing the perimeter
only requires two x points for each pair of y and z values, thus the represen-
tation of the region is greatly reduced in size from O(n3) to O(n2). Using our
prototype as an example, this reduces the storage requirement from 43.5M bytes
to 178K bytes—each of these are highly compressible. This greatly aids Ferret’s
ability to store the regions directly on the storage-poor tags. The line segment
representation does mean that the system cannot incorporate negative regions,



as intersecting with a negative region can create a concave, rather than convex,
region. A concave region would return the complexity of the representation and
the intersection to O(n3). False negatives do not affect the system, as negative
readings are not used at all.

3.4 Dealing with Nomadic Objects

We designed Ferret to deal with objects that move infrequently—commonly
referred to as nomadic—as opposed to mobile objects that move frequently.
When objects do move, Ferret should adjust to deal with this. In the online
algorithm, this is straightforward. When the location algorithm performs an
intersection of two maps, it may produce a region of zero volume. This indicates
that the maps were disjoint, and the object could not possibly be within the
previously postulated region. The system then reinitializes the location map, L,
to the most current reading, which is M rotated and translated to the reader’s
current position.

However, the offline algorithm is more complicated as it produces a likelihood
location map. One solution is applying a likelihood threshold to the likelihood
location map and removing any location with a probability less than the thresh-
old. If the resulting location map is empty, we will consider that the object has
moved and reinitialize the location map, L, to the most current reading. Choos-
ing an appropriate threshold is a critical factor in this approach. Using a larger
threshold will increase the likelihood that the resulting location map is empty
when the object actually did not move. In Section 5, we show how to choose an
appropriate threshold.

4 Implementation Considerations

We have implemented a prototype Ferret system as shown in Figure 5. Although
the prototype is quite large, this is due to the combination of many separate
pieces of hardware—there is nothing that would preclude a much smaller com-
mercial version. Our prototype is based on the following hardware:

A ThingMagic Mercury4 RFID reader. The output power of the reader is set
to 30dBm (1Watt). This reader operates at the frequency range 909− 928MHz,
and supports RFID tags of EPC Class 0, EPC Class 1, and ISO 18000-6B.
The reader is paired with a ThingMagic monostatic circular antenna that has a
balloon shaped radiation pattern. An alternative is to a use a linear antenna that
has a more focused radiation pattern and longer range; however, the narrower
beam will produce fewer positive readings for each tag. The tradeoff in antenna
choice and the possibility of future antennas with variable radiation patterns
are interesting questions for future research. We used an orientation-insensitive,
EPC Class 1, Alien Technology “M” RFID tag operating at 915MHz.

A Sony Motion Eye web-camera connected to a Sony Vaio laptop. This
CMOS-based camera is set to a fixed focal length of 2.75mm, and uses a sensor
size of 2.4mm by 1.8mm. The camera provides uncompressed 320x240 video at
12 frames-per-second.



Fig. 5. Ferret Prototype System

Cricket [10] ultrasound 3D locationing system to estimate the location of
the camera and RFID reader. We deployed Cricket beacons on the ceiling, and
attached a Cricket sensor to our prototype system. The Cricket sensor is offset
from the camera and RFID reader and we correct for this translation in software.

A Sparton SP3003D digital compass to obtain the 3D orientations (pan, tilt,
and roll) of the camera’s lens and the reader’s antenna. We mounted the compass,
the camera’s lens, and the reader’s antenna with the same 3D orientation.

5 Experimental Evaluation
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Fig. 6. Online refinement of location

In this section, we evaluate Ferret by focusing on the performance of loca-
tioning and projection. In particular, we concentrate on how quickly Ferret can
refine the location of an object for a user. We show how to tune the offline algo-
rithm to trade the size of the location region and the overall error rate. We then
show a comparison of the online and offline systems. We demonstrate that Ferret
can detect objects that move within a room and we show the computation and
storage costs of our system.

We measure Ferret’s performance using two metrics: the size of the postu-
lated location and the error rate. Ferret automatically provides the size, either
the volume of the three-dimensional region, or the area of the two-dimensional



projection on the video screen. The three-dimensional region is not spherical,
but to interpret the results, a sphere with a volume of 0.01m3 has a diameter of
26.7cm and a volume of 0.1m3 has a diameter of 57.6cm. Ferret’s error rate is
the number of objects that do not appear in the area projected onto the display.
The error rate is determined through manual inspection of a video recording.

All of our experiments are conducted in a 4m x 10m x 3m room equipped
with a Cricket ultrasound system. We used five beacons mounted on the ceiling
which we manually calibrated. The origin of our world-coordinate system is a
corner of the room. The camera records all video at 12 frames/second, and the
RFID reader produces 4 readings per second. For the online system, we use a
coverage map that includes all places where the tag has a non-zero probability
of reading a tag. That region is an irregular shape that is 2.56m x 1.74m x 2.56m
at the maximum and has a volume of approximately 2m3.

5.1 Online Refinement Performance

The primary goal of Ferret is to quickly locate, refine, and display an outline
on the video display that contains a particular object. As this happens online,
Ferret continuously collects readings and improves its postulation of the object’s
location—this is reflected as the volume of the region shrinking over time. To
demonstrate this, we placed one tag in the room, and then walked “randomly”
around the room with the prototype. We plot the volume of the location esti-
mation versus time in Figure 6. The absolute volume tracks the total volume
of the region, while the relative volume tracks the size of the region relative to
the starting coverage region of the reader. In this case Ferret does not make any
errors in locating the object. The time starts from the first positive reading of
the tag and Ferret begins with no previous knowledge about object locations.

The results show that the volume size of the location estimation drops from
2m3 to 0.02m3 which is only 1% of the reader’s coverage region in less than 2
minutes. The volume monotonically decreases, as intersecting positive readings
only shrinks the area, while negative readings are ignored. Also, this is a pes-
simistic view of the refinement time—with prior knowledge, the process occurs
much more rapidly. For instance, if the user switches to searching for another ob-
ject in the same room, Ferret can take advantage of all of the previous readings.
If a previous user has stored location information on the tag, this reader can also
take advantage of that from the time of the first reading. Additionally, if some
location information is stored in a centralized database, Ferret can immediately
project an area onto the video without any positive readings.

In addition to the volume size of the location estimation, we also plot the
projection area versus time in Figure 6(c) in which the projection areas are shown
as a percentage of the image plane area. Our results show that the final projection
area is only 3% of the whole image, or approximately a 54 pixel diameter circle on
a 320 x 240 frame. However, the projection area does not monotonically decrease
as the volume does. This is because the camera is constantly moving, thus the
point-view constantly changes, and the same volume can project different areas
from different orientations.



5.2 Offline Algorithm Performance

While the online algorithm is useful for current mobile devices, the offline algo-
rithm uses more information, and a more precise representation of the object’s
location likelihood. To evaluate Ferret’s precision in locating objects, we placed
30 tags in a 2.5m x 2.5m x 2m region, and we move the prototype around the
room for 20 minutes. We repeat the experiment 3 times and record the volume of
the postulated region, and manually verify how many objects are truly contained
in the area projected onto the video plane. With 30 tags and 3 experiments, Fer-
ret can make between 0 and 90 location errors.

Before evaluating the offline algorithm, we must set a threshold for the min-
imum likelihood for the object as described in Section 3. Recall that a larger
threshold can reduce the volume encompassing the likely position of the object.
However, a larger threshold will also increase the error rate of Ferret (the vol-
ume doesn’t contain the object). In order to test the sensitivity of offline Ferret
to the change of likelihood threshold, we varied the likelihood threshold from
0.00001 to 0.4, and ran the offline Ferret algorithm on the data we collected in
the experiment. We show the results in Figure 7.

Threshold Errors Mean Volume

0.00001 5/90 0.0117m3

0.0001 5/90 0.0117m3

0.001 5/90 0.0116m3

0.01 5/90 0.0112m3

0.1 6/90 0.0108m3

0.2 7/90 0.0104m3

0.3 8/90 0.0102m3

0.4 9/90 0.0100m3

Fig. 7. Performance of offline Ferret under
different likelihood thresholds.
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Fig. 8. CDF of locationing accuracy

The results show that: (i) the number of errors almost doubles from 5 to 9
as threshold increase from 0.00001 to 0.4 (ii) the mean volume of the location
estimation is essentially constant; and (iii) for a threshold ≤ 0.01, the number
of errors doesn’t change. When using too high of a threshold Ferret incorrectly
shrinks the volume, leaving out possible locations for the object. Considering
the balance of error rate and mean volume, we choose a likelihood threshold of
0.01. Using this threshold, we run the offline algorithm and compare it to the
performance of the online algorithm. In Figure 8, we plot the CDF of Ferret’s
location accuracy for both algorithms.

The results show that (i) The online algorithm can localize an object in
0.15m3 and 0.05m3 regions with 80% and 50% probability, respectively. The
0.15m3 and 0.05m3 regions are only 7.5% and 2.5% of the reader’s coverage
region which is 2m3; (ii) The offline algorithm outperforms the online algorithm
by localizing an object in a 0.05m3 region with more then 90% probability and
in a 0.1m3 region with 100% probability.

However, when we verify the online algorithm’s error rate, it only makes 2
errors, as compared to the offline algorithm’s 5 errors. We believe that the slightly



greater number of errors in the offline algorithm is due to our incorporation of
negative readings in the algorithm. In this experimental setup, the prototype
system is constantly moving and the tags are in the coverage region of the RFID
reader for a small portion of the total time (less than 5%). This scenario will
generate 19 times the number of negative readings than positive readings, and
negative readings are weighted as heavily as positive readings. Considering that
we measured the performance of the reader under ideal conditions, we have
overestimated the performance of the RFID reader. The online algorithm does
not exhibit the same behavior as it does not ever use negative readings. As
negative readings are correlated by orientation, and location, we believe that
more accurate modeling of reader performance is an important direction for
future research.

5.3 Mobility Effects

Ferret exploits the user’s mobility to produce a series of readings from multiple
positions, and further refine its location estimation via intersecting the coverage
regions at these positions. The previous experiment showed the results of a
human, yet uncontrolled, mobility pattern. In reality users move erratically;
however, their motions are composed of smaller, discrete motion patterns. To
study how individual patterns affect the performance of Ferret we placed a single
tag in the room and evaluated Ferret with a small set of semi-repeatable motion
patterns shown in Figure 9: (a) straight line, the prototype system moves in
a straight line, tangential to the object, without changing the orientation of the
camera lens and RFID reader; (b) head-on, the prototype moves straight at the
object and stops when the reader reaches the object; (c) z-Line, the prototype
system moves in a z-shaped line without changing its orientation; (d) rotation,
the prototype system moves in an arc, while keeping the lens orientation radial
to the path; (e) circle, the prototype system moves in a circle, while keeping the
reader facing the object. Intuitively, the circular pattern may be the least likely
of the mobility patterns, whereas the head-on is probably the most likely—once
the user gets one positive reading, she will tend to head towards the object in
a head-on pattern. We evaluated Ferret’s performance using the volume of the
resulting region. For each movement pattern we ran three experiments, averaged
the results, and compared the smallest volume size of both online and offline
Ferret. Our results are shown in Figure 11.

The results show that Ferret performs similarly for each of the movement
patterns; however the circular pattern performs the worst. The circular pattern
always keeps the object in view and generally in the center of the reader’s cov-
erage region. This produces a set of readings that generally cover very similar
regions. In each of the other cases, the mobility of the reader covers more dis-
joint spaces, and thus produces smaller volumes. This is true even of the head-on
pattern as the first reading and the last reading have very little volume in com-
mon. Another result is that the offline algorithm widely outperforms the online
algorithm, except in the case of the circular and head-on patterns, where the
performance is similar. Much of the offline algorithm’s performance advantage
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Fig. 10. Detected object movements
Straight line Head-on z-Line Rotate Circle

online Volume (m3) 0.020 0.0042 0.023 0.026 0.032

offline Volume (m3) 0.0015 0.0030 0.0017 0.0011 0.026
offline : online 13.33 1.40 13.52 23.63 1.23

Fig. 11. Performance of Ferret under various mobility patterns.

comes from incorporating negative readings to reduce the possible locations for
the object. In the case of the circular and head-on patterns, the object is always
in view, producing few negative readings, yielding similar performance to the
online algorithm. Although non-intuitive, this means that not seeing the object
is as important as seeing it to narrow its location.

5.4 Object Motion Detection

Ferret is designed to deal with objects that move infrequently, but when the
object does move, Ferret should detect this and start its refinement process
over. As discussed in Section 3, whenever Ferret encounters an empty location
estimation, Ferret assumes that the corresponding object has moved. To evaluate
Ferret’s performance in detecting these nomadic objects we place a tag in the
room and use Ferret to estimate its location. We then move the tag a distance
between 5cm and 200cm and again use Ferret to estimate its location. We repeat
the experiment ten times for each distance, and record the number of times that
Ferret didn’t detect a moved object. The results are shown in Figure 10.

The figure shows that the online and offline Ferret can detect 100% object
movements when the moving distance exceeds 25cm and 20cm, respectively.
This is consistent with our previous results that show that Ferret can localize
an object to within an region with a volume of hundredths of a m3—this gives
a radius on the order of 20cm, exactly how well Ferret can detect movement. As
the object has not actually left the postulated area, Ferret is still correct about
the object’s location.

5.5 Spatial Requirements

The prototype has a non-zero probability of detecting tags in balloon-shaped
region, with maximum dimensions of 2.56m x 2.56m x 1.74m—this shape has a
volume of approximately 2m3. For the offline algorithm we sample this coverage



region every centimeter. As discussed in Section 3, the offline algorithm requires
every point in this space, while the online algorithm only requires a set of points
that describe the exterior of the region. This reduced representation results in
much smaller spatial requirements as compared to offline spatial requirements:
(i) the offline algorithm uses a float of four bytes to describe the probability of
a sample point, and the total space is 256 ∗ 256 ∗ 174 ∗ 4 = 43.5M bytes using a
three dimensional array to store the probabilities of all sample points, and (ii)
the online algorithm uses a two dimensional array (the dimensions correspond
to y and z) to represent the coverage region, and consequently, it only needs two
bytes to track the x value of every outside sample point, thus the total space
required is 256∗174∗2 = 178K bytes. Both the offline and online representations
are highly compressible: the offline can be reduced to 250K bytes and the online
representation to 5K bytes using the commonly available compression tool gzip.
For the foreseeable future, RFID tags will not contain enough storage for the
offline representation, while the online version is not unreasonable. If tags have
more or less storage the number of sample points can be adjusted, although this
will affect the precision of the system.

5.6 Computational Requirements

The computational requirements of the offline and online algorithms have a
similar relationship. We measured the computational requirements of Ferret’s
locationing algorithm on an IBM X40 laptop equipped with a 1.5GHz Pentium-
M processor: (i) the offline algorithm costs 749.32ms per reading for each object,
and (ii) the online algorithm only costs 6ms per positive reading for each object,
which is only 1/125 of the offline computational requirements. Our results show
that the online algorithm incurs small overhead and will run online to track
multiple tags simultaneously on relatively inexpensive hardware, while the offline
algorithm incurs large overhead and can only run offline.

6 Related Work

Researchers have developed RFID-based indoor locationing systems [8, 9] using
active, battery powered, RFID tags. In SpotON [8], Hightower, et. al, use the
radio signal attenuation to estimate tag’s distance to the base stations, and
triangulate the position of the tagged objects with the distance measurements
to several base stations. LANDMARC [9] deploys multiple fixed RFID readers
and reference tags as infrastructure, and measures the tracking tag’s nearness
to reference tags by the similarity of their signal received in multiple readers.
LANDMARC uses the weighted sum (the weight is proportional to the nearness)
of the positions of reference tags to determine the 2D position of the tag being
tracked.

The above work use battery-powered sensors to identify and locate objects.
These sensors are expensive (at least tens of dollars per sensor) and have limited
lifetime (from several days to several years). These limitations prevent them



from scaling to applications dealing with hundreds and thousands of objects.
In contrast, passive RFID tags are inexpensive (less than a dollar per tag and
falling) and do not require battery power source. These features make passive
RFID technology ideal for such applications.

Fishkin, et.al, proposed a technique to detect human interactions with passive
RFID tagged objects using static RFID readers in [4]. The proposed technique
used the change of response rate of RFID tags to unobtrusively detect human
activities on RFID tagged objects such as, rotating objects, moving objects,
waving a hand in front of objects, and walking in front of objects. However,
this doesn’t consider the problem of estimating the locations of RFID tagged
objects. Their experimental results show that their system could nearly always
detect rotations, while the system performed poorly in detecting translation-only
movement.

Hähnel, et.al proposed a navigation, mapping and localization approach us-
ing the combination of a laser-range scanner, a robot and RFID technology [6].
Their approach employed laser-based FastSLAM [7] and Monte Carlo localiza-
tion [2] to generate offline maps of static RFID tags using mobile robots equipped
with RFID readers and laser-range scanner. Through practical experiments they
demonstrated that their system can build accurate 2D maps of RFID tags, and
they further illustrated that resulting maps can be used to accurately localize
the robot and moving tags. Ferret’s offline algorithm uses the same underlying
technique to map the detection probability and form a pose about the location of
the tag. However, Ferret focuses on the novel problems posed by the integration
of a handheld device and nomadic objects. In addition to the offline technique,
Ferret also provides an online algorithm for real-time use on a mobile device—
this technique greatly reduces complexity over the offline technique. Ferret also
address the concerns of how to deal with nomadic objects, such as how to reset
the locationing algorithm when objects move. Furthermore, Ferret incorporates
a video display to show the tags’ locations—the offline algorithm alone does not
provide a method for displaying the uncertainty region to the user, something
that Ferret adds. Our evaluation shows that Ferret can incorporate human move-
ments, as opposed to robotic ones, demonstrating that these techniques will be
useful for human-driven applications.

The 3D RFID system uses a robot-controlled uni-directional antenna, and
the 3D tag consists of several combined tags [11]. Two kinds of 3D tags are
developed: union tag and cubic tag. The proposed system can not only detect
the existence of the 3D tag but also estimate the orientation and position of the
object. However, they require specific orientation-sensitive 3D tags, custom-built
from multiple tags. Furthermore, the system uses an expensive robot system to
control the antenna’s movement and then estimate the orientation and position
of the object. In contrast, Ferret only needs one standard orientation-insensitive
tag per object and the user’s inherent mobility to estimate the object’s location.



7 Conclusions

This paper presents the design and implementation of Ferret, a scalable system
for locating nomadic objects augmented with RFID tags and displaying them to a
user in real-time. We present two alternative algorithms for refining a postulation
of an object’s location using a stream of noisy readings from an RFID reader: an
online algorithm for real-time use on a mobile device, and an offline algorithm for
use in post-processing applications. We also present methods for detecting when
nomadic objects move and how to reset the algorithms to restart the refinement
process.

We present the results of experiments conducted using a fully working pro-
totype. Our results show that (i) Ferret can refine object locations to only 1% of
the reader’s coverage region in less than 2 minutes with small error rate (2.22%);
(ii) Ferret can detect nomadic objects with 100% accuracy when the moving dis-
tances exceed 20cm; and (iii) Ferret can use a variety of user mobility patterns.
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